The Central Limit Theorem and Poincare-Type Inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy inequalities and the Central Limit Theorem

Motivated by Barron (1986, Ann. Probab. 14, 336–342), Brown (1982, Statistics and Probability: Essays in Honour of C.R. Rao, pp. 141–148) and Carlen and So er (1991, Comm. Math. Phys. 140, 339–371), we prove a version of the Lindeberg–Feller Theorem, showing normal convergence of the normalised sum of independent, not necessarily identically distributed random variables, under standard conditio...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Poincare Inequalities

Poincare inequalities are a simple way to obtain lower bounds on the distortion of mappings X into Y. These are shown below to be sharp when we consider the Lp spaces. A Poincare inequality is one of the following type: suppose Ψ : [0, ∞) → [0, ∞) is a nondecreasing function and that au,v, bu,v are finite arrays of real numbers (for u, v ∈ X, and not all of the numbers 0). We say that functions...

متن کامل

The Martingale Central Limit Theorem

One of the most useful generalizations of the central limit theorem is the martingale central limit theorem of Paul Lévy. Lévy was in part inspired by Lindeberg’s treatment of the central limit theorem for sums of independent – but not necessarily identically distributed – random variables. Lindeberg formulated what, in retrospect, is the right hypothesis, now known as the Lindeberg condition,1...

متن کامل

The Lindeberg central limit theorem

Theorem 1. If μ ∈P(R) has finite kth moment, k ≥ 0, then, writing φ = μ̃: 1. φ ∈ C(R). 2. φ(v) = (i) ∫ R x edμ(x). 3. φ is uniformly continuous. 4. |φ(v)| ≤ ∫ R |x| dμ(x). 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/ jordanbell/notes/narrow.pdf 2Onno van Gaans, Probability measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1988

ISSN: 0091-1798

DOI: 10.1214/aop/1176991902